A hybrid neural network and maximum likelihood based estimation of chirp signal parameters
نویسندگان
چکیده
This research introduces the hybrid Multilayer feed forward Neural Network (NN) and the Maximum Likelihood (ML) technique into the problem of estimating a single component chirp signal parameters. The unknown parameters needed to be estimated are the chirp-rate, and the frequency parameters. NN was trained with several thousands noisy chirp signals as the NN inputs, where the chirp-rate and the frequency parameters were embedded into those chirp signals, and those parameters were used as the corresponding NN output. The NN resulted in parameter estimates that were near the global maximum point. ML gradient based technique then used the NN output parameter estimates as its initial starting point in its search of the global point parameters. The ML gradient based search improved the accuracy of the NN parameter estimates and the new estimates were very much near the exact parameter values. Hence it can be said that NN working in corporation with the ML gradient based search results in accurate parameter estimates for the case of large signal to noise ratio.
منابع مشابه
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملUsing neural network to estimate weibull parameters
As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...
متن کاملStep change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کاملA Signal Processing Approach to Estimate Underwater Network Cardinalities with Lower Complexity
An inspection of signal processing approach in order to estimate underwater network cardinalities is conducted in this research. A matter of key prominence for underwater network is its cardinality estimation as the number of active cardinalities varies several times due to numerous natural and artificial reasons due to harsh underwater circumstances. So, a proper estimation technique is mandat...
متن کاملA New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)
Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 10 شماره
صفحات -
تاریخ انتشار 2013